1,477 research outputs found

    Precise measurement of the total cross section and the Coulomb scattering at the LHC

    Get PDF
    A precise measurement of the total cross section and the coulomb scattering at the LHC requires the observation of elastically scatteredparticles at extremely small angles (14 microrad, -t < 0.01 GeV**2 for the first case; 3 microrad, -t<0.0006 GeV**2 for the second one). In this paper a very high-beta insertion optics is presented. A feasibility study, including the acceptance of the detectors, for an experiment to be installed in IR1 or IR5, is also presented.Comment: 3 pages, 4 figures, 7th European Particle Accelator Conferenc

    First result with AMBER+FINITO on the VLTI: The high-precision angular diameter of V3879 Sgr

    Full text link
    Our goal is to demonstrate the potential of the interferometric AMBER instrument linked with the Very Large Telescope Interferometer (VLTI) fringe-tracking facility FINITO to derive high-precision stellar diameters. We use commissioning data obtained on the bright single star V3879 Sgr. Locking the interferometric fringes with FINITO allows us to record very low contrast fringes on the AMBER camera. By fitting the amplitude of these fringes, we measure the diameter of the target in three directions simultaneously with an accuracy of 25 micro-arcseconds. We showed that V3879 Sgr has a round photosphere down to a sub-percent level. We quickly reached this level of accuracy because the technique used is independent from absolute calibration (at least for baselines that fully span the visibility null). We briefly discuss the potential biases found at this level of precision. The proposed AMBER+FINITO instrumental setup opens several perspectives for the VLTI in the field of stellar astrophysics, like measuring with high accuracy the oblateness of fast rotating stars or detecting atmospheric starspots

    A Very High-beta Optics to be used for an Absolute Luminosity Determination with Forward Detectors in ATLAS

    No full text
    The Atlas experiment at the LHC pursues a number of different approaches to obtain an estimate of the absolute luminosity [3]. Measuring elastic scattering at very small angles (3 μrad) represents a different and complimentary approach that will improve the precision of the final luminosity estimate. In this paper we show the required very high-β optics and the detector acceptance studies

    Infrared Imaging of Capella with the IOTA Closure Phase Interferometer

    Get PDF
    We present infrared aperture synthesis maps produced with the upgraded IOTA interferometer. Michelson interferograms on the close binary system Capella (Alpha Aur) were obtained in the H-band between 2002 November 12 and 16 using the IONIC3 beam combiner. With baselines of 15m < B < 38m, we were able to determine the relative position of the binary components with milliarcsecond (mas) precision and to track their movement along the approx. 14 degree arc covered by our observation run. We briefly describe the algorithms used for visibility and closure phase estimation. Three different Hybrid Mapping and Bispectrum Fitting techniques were implemented within one software framework and used to reconstruct the source brightness distribution. By dividing our data into subsets, the system could be mapped at three epochs, revealing the motion of the stars. The precise position of the binary components was also determined with model fits, which in addition revealed I_Aa/I_Ab=1.49 +/- 0.10 and apparent stellar uniform-disk (UD) diameters of Theta_Aa=8.9 +/- 0.6 mas and Theta_Ab=5.8 +/- 0.8 mas. To improve the u, v-plane coverage, we compensated this orbital motion by applying a rotation-compensating coordinate transformation. The resulting model-independent map with a beam size of 5.4 x 2.6 mas allows the resolution of the stellar surfaces of the Capella giants themselves.Comment: Accepted by the Astronomical Journal (2005-03-21

    Bright Localized Near-Infrared Emission at 1-4 AU in the AB Aurigae Disk Revealed by IOTA Closure Phases

    Get PDF
    We report on the detection of localized off-center emission at 1-4 AU in the circumstellar environment of the young stellar object AB Aurigae. We used closure phase measurements in the near-infrared made at the long baseline interferometer IOTA, the first obtained on a young stellar object using this technique. When probing sub-AU scales, all closure phases are close to zero degrees, as expected given the previously-determined size of the AB Aurigae inner dust disk. However, a clear closure phase signal of -3.5 +/- 0.5 degrees is detected on one triangle containing relatively short baselines, requiring a high degree of non-point symmetry from emission at larger (AU-sized) scales in the disk. We have not identified any alternative explanation for these closure phase results and demonstrate that a ``disk hot spot'' model can fit our data. We speculate that such asymmetric near-infrared emission detected might arise as a result of localized viscous heating due to a gravitational instability in the AB Aurigae disk, or to the presence of a close stellar companion or accreting sub-stellar object.Comment: Accepted by Astrophysical Journal Letter

    Measurement of forward photon production cross-section in proton-proton collisions at s\sqrt{s} = 13 TeV with the LHCf detector

    Full text link
    In this paper, we report the production cross-section of forward photons in the pseudorapidity regions of η>10.94\eta\,>\,10.94 and 8.99>η>8.818.99\,>\,\eta\,>\,8.81, measured by the LHCf experiment with proton--proton collisions at s\sqrt{s} = 13 TeV. The results from the analysis of 0.191 nb1\mathrm{nb^{-1}} of data obtained in June 2015 are compared to the predictions of several hadronic interaction models that are used in air-shower simulations for ultra-high-energy cosmic rays. Although none of the models agree perfectly with the data, EPOS-LHC shows the best agreement with the experimental data among the models.Comment: 21 pages, 4 figure

    The performance of the LHCf detector for hadronic showers

    Full text link
    The Large Hadron Collider forward (LHCf) experiment has been designed to use the LHC to benchmark the hadronic interaction models used in cosmic-ray physics. The LHCf experiment measures neutral particles emitted in the very forward region of LHC collisions. In this paper, the performances of the LHCf detectors for hadronic showers was studied with MC simulations and beam tests. The detection efficiency for neutrons is from 60% to 70% above 500 GeV. The energy resolutions are about 40% and the position resolution is 0.1 to 1.3mm depend on the incident energy for neutrons. The energy scale determined by the MC simulations and the validity of the MC simulations were examined using 350 GeV proton beams at the CERN-SPS.Comment: 15pages, 19 figure

    Extreme adaptive optics imaging with a clear and well-corrected off-axis telescope sub-aperture

    Get PDF
    Rather than using an adaptive optics (AO) system to correct a telescope s entire pupil, it can instead be used to more finely correct a smaller sub-aperture. Indeed, existing AO systems can be used to correct a sub-aperture 1/3 to 1/2 the size of a 5-10 m telescope to extreme adaptive optics (ExAO) levels. We discuss the potential performance of a clear off-axis well-corrected sub-aperture (WCS), and describe our initial imaging results with a 1.5 m diameter WCS on the Palomar Observatory s Hale telescope. These include measured Strehl ratios of 0.92-0.94 in the infrared (2.17 microns), and 0.12 in the B band, the latter allowing a binary of separation 0.34 arc sec to be easily resolved in the blue. Such performance levels enable a variety of novel observational modes, such as infrared ExAO, visible-wavelength AO, and high-contrast coronagraphy. One specific application suggested by the high Strehl ratio stability obtained (1%) is the measurement of planetary transits and eclipses. Also described is a simple dark-hole experiment carried out on a binary star, in which a comatic phase term was applied directly to the deformable mirror, in order to shift the diffraction rings to one side of the point spread function.Comment: accepted by Ap
    corecore